Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

نویسندگان

  • Patrick Gan
  • John S Foord
  • Richard G Compton
چکیده

Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO2 reduction through surface modification

Competitive hydrogen evolution and multiple proton-coupled electron transfer reactions limit photoelectrochemical CO2 reduction in aqueous electrolyte. Here, oxygen-terminated lightly boron-doped diamond (BDDL) thin films were synthesized as a semiconductor electron source to accelerate CO2 reduction. However, BDDL alone could not stabilize the intermediates of CO2 reduction, yielding a negligi...

متن کامل

Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification.

A novel simple and versatile synthetic strategy is developed for the surface modification of boron-doped diamond. In a two-step procedure, polyethyleneimine is adsorbed on the hydrogenated diamond surface and subsequently modified with a model light-harvesting donor-π-bridge-acceptor molecule (coded P1). The sensitized diamond exhibits stable cathodic photocurrents under visible-light illuminat...

متن کامل

Benzene oxidation at diamond electrodes: comparison of microcrystalline and nanocrystalline diamonds.

A comparative study of benzene oxidation at boron-doped diamond (BDD) and nitrogenated nanocrystalline diamond (NCD) anodes in 0.5 M K(2)SO(4) aqueous solution is conducted by using cyclic voltammetry and electrochemical impedance spectroscopy. It is shown by measurements of differential capacitance and anodic current that during the benzene oxidation at the BDD electrode, adsorption of a react...

متن کامل

The detection of nitrate using in-situ copper nanoparticle deposition at a boron doped diamond electrode.

Electrochemical deposition from a 0.1 M sodium sulphate solution, containing Cu2+ (adjusted to pH 3 with hydrochloric acid) produced a well defined copper nanoparticle deposit on the surface of a boron doped diamond electrode. Changing conditions such as potential (-0.8, -1.0 and -1.2 V), time (5, 2 and 0.5 s) and concentration of Cu2+ (500, 250 and 100 microM) was found to give copper nanopart...

متن کامل

Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015